
ADIFOR Working Note #8:Hybrid Evaluation of Second Derivativesin ADIFOR�byChristian Bischof, George Corliss,y and Andreas GriewankMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439Technical Memorandum ANL/MCS{TM{166AbstractMany algorithms for scienti�c computation require second- or higher-order partial derivatives,which can be e�ciently computed by propagating a set of univariate Taylor series. We describehow to implement second-order mixed partial derivative computations in ADIFOR (Automatic Dif-ferentiation In FORtran), a Fortran-to-Fortran source transformation tool. Globally, we propagatethree-term univariate Taylor series in the forward mode. Locally, we preaccumulate local gradientsand Hessians for complicated expressions on the right-hand sides of assignment statements. Wedescribe the source transformations and give an example of the transformed code.1 GoalsThe goals of this paper are1. to describe the code generated by ADIFOR to compute second derivatives and2. to document some of the design decisions made in arriving at this implementation.We assume that the reader is familiar with the Fortran-to-Fortran source transformation tool AD-IFOR (Automatic Di�erentiation In FORtran) as described in [1, 2, 3, 4, 6], as well as with thetheoretical framework for computing second- and higher-order mixed partial derivatives by interpo-lating from sets of univariate Taylor series [5]. Here, we describe the implementation in ADIFOR ofthe framework outlined in [5].In Section 2, we outline brie
y where second derivatives are required for reliable scienti�c com-putation. A more complete survey of algorithms that require second- and higher-order derivatives isin [5]. In Section 3, we discuss components of the algorithmwe implement if ADIFOR for computingsecond derivatives: forward-mode Hessians, interpolation, forward-mode Taylor series, and preaccu-mulation. Section 4 contains a discussion of the tasks accomplished by ADIFOR in its generationof code to compute second-order derivatives. An example in Section 5 applies ADIFOR's tasks to asimple subroutine. Finally in Section 6, we discuss some implementation decisions.�This work was supported by the Applied Mathematical Sciences subprogram of the O�ce of Energy Research,U.S. Department of Energy, under Contract W-31-109-Eng-38.yAlso a�liated with the Department of Mathematics, Statistics, and Computer Science, Marquette University,Milwaukee, Wisconsin 53233. 1

2 Need for Second DerivativesThe primary motivation for adding the ability to compute second derivatives comes from opti-mization. Given f : Rn 7! R, unconstrained optimization algorithms minimize f locally by solvingrf = 0 using a Newton or a secant-type iterative method [7]. The Newton iteration requires theHessianr2f . In nonlinearly constrained optimization, the curvature of the constraint surfaces is rep-resented by the Hessians r2ci of the active constraints ci(x) = 0. Often, all these second derivativesare aggregated into the Hessian of the Lagrangianr2L = r2f +Xi �ir2ci;where the Lagrange multipliers �i are derived in some way from �rst derivative information, i.e. thegradients of the objective and the active constraints. In most large-scale optimization problems, theHessians of the objective and constraints are sparse or otherwise structured.3 Building BlocksIn this section, we discuss three building blocks that together comprise the algorithm we imple-ment in ADIFOR for computing second derivatives:1. Forward-mode Hessians,2. Interpolation utilizing forward-mode univariate Taylor series, and3. Preaccumulation.Globally at the level of the entire function being di�erentiated, we can choose either alterna-tive 1 or alternative 2. The second alternative is preferred because it can be used to exploit thesparsity often present in Hessian matrices, it parallelizes and vectorizes, and it generalizes to higherderivatives.Locally for complicated right-hand sides of assignment statements, we can choose the size of unitsfor which the univariate Taylor series are propagated. We can parse each complicated expression intoan equivalent sequence of unary and binary operations as the discussion of alternative 2 in Section3.2 suggests. Preaccumulating local derivatives as discussed in Section 3.3 allows us to propagateseries at the level of the statements in the original code, rather than to the smaller units of binaryoperations. Preaccumulating local derivatives of complicated expressions saves storage space, codesize, and execution time. Eventually, we will generalize the preaccumulation technique to Fortranfunctions and to some subroutines and basic blocks.In the rest of this section, we examine in detail the three building blocks listed above.3.1 Forward-Mode HessiansOne could use the forward mode of automatic di�erentiation to compute the gradient and thedense Hessian of f by propagating the �rst- and second-derivative objects strictly in the forwardmode [9]. We describe how this would be done to show that the combination of preaccumulationand interpolation yields much more e�cient code.3.1.1 Example { MultiplicationSuppose that u and v are active variables (they depend on values of independent variables). Thevalues of ru, rv, r2u, and r2v have been computed along with the values for u and v. As an2

example of a typical operation, suppose that f = f(u; v) = u � v. Then by the chain rule, we havef = uvrf = u � rv +ru � v (1)r2f = u � r2v +ru � (rv)T +rv � (ru)T + v � r2u:Table 1 gives the computational complexity for the � operator.Table 1. Computational complexity of the � operatorCost +'s �'sFunction 0 1Gradient n 2nHessian 1:5n(n+ 1) 2n(n+ 1)The complexity of the other operators is similar, di�ering only in the constants. The storage com-plexity for the naive forward propagation of rf and r2f is proportional to n2=2 times the storagerequired for computing f . The time and storage complexity for the naive forward propagationcontrasts sharply with the corresponding complexities for the univariate Taylor series whose com-plexities are a small multiple of (the number of nonzero elements of r2f) � (the corresponding costsfor f).The alternative of overall reverse-mode propagation of adjoint values [8] is attractive for com-puting gradients, but for the highly structured Hessians and higher-order derivatives, the globalapplication of the forward mode is satisfactory. We avoid the overhead of run-time recording eachoperation, while retaining the
exibility to apply compile-time reversal of complicated expressionsand eventually some basic blocks of code. The code generated by ADIFOR uses a hybrid of theforward and the reverse modes at the statement level.3.1.2 Example { Short SubroutineHere we give a more complete example of the forward propagation of dense Hessians. TheADIFOR-generated code includes many code optimizations.Suppose that the original subroutine fcn provided by the user for the computation of a functionf : x 2 Rn 7! f 2 R contains an active variable u. For the present discussion, we assume thatp = pmax = n. Then the ADIFOR-generated variables g$u and h$u in h$fcn containg$u(j) := @u@xj ; for j = 1(1)ph$u(j; i) := @2u@xj@xi ; for j = 1(1)p; i = 1(1)jWe illustrate the code to be generated by ADIFOR by a simple example similar to that usedin [3] to motivate the hybrid mode for �rst derivative objects.Consider the subroutine in Listing 1.subroutine fcn (x, xdim, f, fdim)integer xdim, fdimreal x(xdim), f(fdim)f(1) = -x(1) / (x(2) * x(3) * x(4))returnend Listing 1. Subroutine fcn3

We nominate x as an independent variable and f as a dependent variable. In this example, thereare n = 4 independent variables.The raw, unoptimized code segment for computing the gradient in the hybrid mode is shownin Listing 2. The complete subroutine gfcn3, the subordinate subroutine saxpy4, and a mainprogram comparing the Jacobian computed by gfcn3 given in Listing 2 with the hand-codedJacobian are included in Appendix A. While this code resembles ADIFOR-generated code, we pointout that the actual code generated by ADIFOR is much more e�cient than the code in Listing 2.We include this code as a basis for building the Hessian code to follow in Listing 3.subroutine gfcn3 (gp, x, gx, ldgx, xdim, f, gf, ldgf, fdim)integer xdim, fdim, gp, ldgx, ldgfreal x(xdim), f(fdim), g$x(ldg$x,xdim), g$f(ldg$f,fdim)C f(1) = -x(1) / (x(2) * x(3) * x(4))r$0 = x(1); r$1 = x(2); r$2 = x(3); r$3 = x(4); r$4 = -r$0r$5 = r$1 * r$2; r$6 = r$5 * r$3; r$7 = r$4 / r$6C Initialize adjointsr$0bar = r$1bar = r$2bar = r$3bar = r$4bar = r$5bar = r$6bar = 0.0r$7bar = 1.0C Adjoint for r$7 = r$4 / r$6r$4bar = r$4bar + r$7bar * (1.0 / r$6)r$6bar = r$6bar + r$7bar * (-r$7 / r$6)C Adjoint for r$6 = r$5 * r$3r$5bar = r$5bar + r$6bar * r$3r$3bar = r$3bar + r$6bar * r$5C Adjoint for r$5 = r$1 * r$2r$1bar = r$1bar + r$5bar * r$2r$2bar = r$2bar + r$5bar * r$1C Adjoint for r$4 = -r$0r$0bar = r$0bar + r$4bar * (-1.0)call saxpy4 (pmax, gp, r$0bar, g$x(1,1), r$1bar, g$x(1,2),+ r$2bar, g$x(1,3), r$3bar, g$x(1,4), g$f(1,1))f(1) = r$7returnend Listing 2. Forward mode code for the gradientThe gradient object g$x is initialized to an n� n identity matrix.The code that might be generated by ADIFOR to compute both the gradient and the denseHessian in the forward mode is shown in Listing 3.subroutine gfcn3 (gp, x, gx, hx, ldg$x, xdim, f, g$f, hf, ldgf, fdim)integer xdim, fdimreal x(xdim), f(fdim)integer gp, pmax, ldgx, ldgf, gi, gjparameter (pmax = 4)real g$x(ldg$x,xdim), h$x(ldg$x,ldg$x,xdim), g$f(ldg$f,fdim), h$f(ldgf,ldgf,fdim),+ r$4, g$r$4(pmax), h$r$4(pmax,pmax), r$5, gr5(pmax), hr5(pmax,pmax),+ r$6, g$r$6(pmax), h$r$6(pmax,pmax), r$7, gr7(pmax), hr7(pmax,pmax), r$8c Storage:c partial f_kc ----------------------- = h$f (j, i, k)c partial x_j partial x_iC f(1) = -x(1) / (x(2) * x(3) * x(4))r$4 = -x(1)do 99990 g$j$ = 1, gp 4

gr4(gj) = - g$x(g$j$,1)do 99990 g$i$ = gj, gphr4(gj,gi) = - h$x(g$j$,g$i$,1)99990 continuer$5 = x(2) * x(3)do 99980 gj = 1, gpgr5(gj) = x(2) * g$x(g$j$,3) + g$x(gj,2) * x(3)99980 continuedo 99982 gj = 1, gpdo 99982 gi = gj, gphr5(gj,gi)+ = x(2) * h$x(g$j$,g$i$,3) + g$x(gi,2) * g$x(g$j$,3)+ + g$x(gj,2) * g$x(g$i$,3) + h$x(gj,gi,2) * x(3)99982 continuer$6 = r$5 * x(4)do 99970 gj = 1, gpgr6(gj) = r$5 * g$x(gj,4) + gr5(gj) * x(4)99970 continuedo 99972 gj = 1, gpdo 99972 gi = gj, gphr6(gj,gi)+ = r$5* h$x(gj,gi,4) + gr5(gi) * g$x(g$j$,4)+ + g$r$5(g$j$) * g$x(gi,4) + hr5(gj,gi) * x(4)99972 continueC r$7 = r$4 / r$6r$8 = 1.0 / r$6r$7 = r$4 * r$8do 99960 gj = 1, gpgr7(gj) = (gr4(gj) - gr6(gj) * r$7) * r$899960 continuedo 99962 gj = 1, gpdo 99962 gi = gj, gphr7(gj,gi)+ = (hr4(gj,gi) - (gr6(gi) * gr7(gj)+ + gr6(gj) * gr7(gi) + hr6(gj,gi) * r$7)) * r$899962 continuef(1) = r$7do 99950 g$j$ = 1, gpg$f(g$j$,1) = g$r$7(g$j$)do 99950 g$i$ = gj, gph$f(g$j$,g$i$,1) = h$r$7(g$j$,g$i$)99950 continuereturnend Listing 3. Forward mode code for the HessianThe Hessian object h$x is initialized to a n� n� n zero matrix because @2xk@xj@xi = 0 for all k, j,and i.Next, we give code for some operators and elementary functions. We generate the �rst and secondderivative objects strictly in the forward mode. This is not the code we will eventually generate, butit is necessary to formulate this code in order to evaluate the relative merits of partial derivativesversus univariate Taylor series for computing dense Hessians (see Section 3.2).The setting for the operators for computing dense Hessians as their constituent partial derivativesis this: We assume that the user's original code has been parsed into a sequence of assignmentstatements (as in Listing 4) involving only unary or binary operations or elementary functions.5

r$0 = u + vr$1 = u * vr$2 = u / vr$3 = exp (v) Listing 4. Code parsed to unary or binary operationsThe variables u and v are active. We use exp as the prototype for all elementary functions for thepurpose of specifying code for the operators. When we have evaluated alternatives and settled on aplan for Hessian calculation, then we will give the code for all elementary functions. Listing 5 showsthe code for multiplication. A complete program including the code for +, *, /, and exp is includedas Appendix B.c MULTIPLICATION: f = u * vcc df dv duc -- = u * -- + -- * vc dx dx dxcc 2 2 2c d f d v du dv du dv d uc ----- = u * ----- + -- * -- + -- * -- + ----- * vc dx dy dx dy dy dx dx dy dx dyc r$1 = u * vdo g$j$ = 1, pgr1(gj) = u * g$v(g$j$) + g$u(gj) * vdo gi = 1, gjhr1(gj,gi) = u * h$v(g$j$,g$i$) + g$u(gi) * g$v(g$j$)+ + g$u(gj) * g$v(g$i$) + h$u(gj,gi) * vend doend doListing 5. Multiply operators for forward mode dense Hessians as partial derivativesTable 2 gives the computational complexity of the � operator.Table 2. Computational complexity of the � operatorCost +'s �'sFunction 0 1Gradient p 2pHessian 1:5p(p+ 1) 2p(p+ 1)The complexity of the other operators is similar, di�ering only in the constants.3.2 Interpolation Utilizing Forward-mode Univariate Taylor SeriesAs an alternative to the forward-mode propagation of Hessian matrices at the global level ofthe entire function being di�erentiated, we prefer to compute second-order partial derivatives byinterpolation utilizing forward-mode univariate Taylor series. The mathematical theory of recoveringhigh-order mixed partial derivatives from values propagated as univariate Taylor series is given in [5].Here, we outline the ideas and sketch an implementation.6

3.2.1 InterpolationSuppose we have a program that evaluates a scalar function w = f(u; v) with two independentvariables u and v 2 R. In agreement with the design philosophy of ADIFOR, we consider di�eren-tiation with respect to a vector of n = 2 parameters x and y that are not necessarily the same as uand v. Denoting partial di�erentiation by subscripts, we will now try to calculate the 6-tupelw;wx; wy; wxx; wxy; wyyon the basis of the user supplied datau; ux; uy; uxx; uxy; uyy and v; vx; vy; vxx; vxy; vyy:In other words, the scalar arguments u and v have been replaced by the quadratic polynomialsPu(x; y) = u+ uxx+ uyy + 0:5uxxx2 + uxyxy + 0:5uyyy2; andPv(x; y) = v + vxx+ vyy + 0:5vxxx2 + vxyxy + 0:5vyyy2:We are trying to calculate the polynomialPw(x; y) = w + wxx+ wyy + 0:5wxxx2 +wxyxy + 0:5wyyy2that satis�es f(u(x; y); v(x; y)) = Pw(x; y) +O(x3 + y3):The straight-forward way of achieving this goal is to propagate the 6-tupels representing �rstand second derivatives with respect to x and t through the program that de�nes f . The storage perintermediate scalar variable is simply 6 = �42�, and the cost of a convolution is 15 = �62� arithmeticoperations. Hence, we may assume that the run-time of the code in polynomial arithmetic will beroughly 15 times slower than the evaluation of the function itself.Next, suppose we wish to determine Pw by propagating only univariate Taylor series throughthe program. The input expansionsu(x) = u+ uxx+ 0:5uxxx2 and v(x) = v + vxx+ 0:5vxxx2yield the coe�cients w, wx and wxx. Di�erentiating along the y axis yields wy and wyy. The onlycoe�cient missing is the cross term wxy. To obtain it, we can di�erentiate along the diagonal bysetting x = y = s for a third di�erentiation parameter s. The input polynomialsu(s) = u+ (ux + uy)s + (uxy + 0:5uxx+ 0:5uyy)s2; andv(s) = v + (vx + vy)s + (vxy + 0:5vxx + 0:5vyy)s2yield some expansion w(s) = f(u(s); v(s)) = w + �s + �s2 + O(s3):By using the chain rule, the coe�cients � and � satisfy the indentities� = ws = wx +wy; and� = wss=2 = wxy + 0:5wxx + 0:5wyy:Thus, we can calculate the missing cross term aswxy = � � 0:5(wxx + wyy):This is a simple instantiation of the general interpolation procedure for an arbitrary number ofindependent variables and for arbitrary order mixed partial derivatives described in [5].7

3.2.2 Forward-Mode Univariate Taylor SeriesHere, we consider how univariate Taylor series provide the values required to compute denseHessians by the interpolation scheme outlined in Section 3.2.1. The complexity of the operators isvery similar to the complexity of the operators for full, dense Hessians described in Section 3.1.To illustrate how the interpolation scheme works in the special case of second partial derivatives,suppose that x and y are independent variables. Let s := x+ y. If f = f(s) = f(x; y), thendfds = @f@x � @x@s + @f@y � @y@s= @f@x � 1 + @f@y � 1d2fds2 = @@s �@f@x�+ @@s �@f@y �= @2f@x2 � @x@s + @2f@x@y � @y@s + @2f@x@y � @x@s + @2f@y2 � @y@s= @2f@x2 + 2 � @2f@x@y + @2f@y2 :Hence, we expand the Taylor series for f with respect to x, y, and s = x + y, all at the sameexpansion point (whose value is suppressed in the notation for clarity):Table 3. Storage structure for h$ff f' = g$f(�) f'' = h$f(�)At x : f @f@x @2f@x2At s : f @f@s @2f@s2At y : f @f@y @2f@y2The series for x and for y yield the gradient and the diagonal entries in the Hessian. The o�-diagonalentry is @2f@x@y = 0:5 ��@2f@s2 � �@2f@x2 + @2f@y2 �� : (2)We can view the computations implied by Table 3 as vector instructions to be executed for eachTaylor series in the table. Alternatively, the number of operations required to compute the valuesin the second column equals the number of independent variables since f0(2) = f0(1) + f0(3). Thenumber of operations required to compute the values in the third column equals the number ofnonzero elements in the Hessian matrix. With these storage optimizations, the storage and opera-tions required by the univariate Taylor polynomials are 1 + n + n � (n + 1)=2, which is exactly thesame storage and operations required for f , rf , and Hessian (f) in the full, dense mode.Next, we look at the operators for sets of univariate Taylor polynomials in the hope that theyare simpler than the corresponding operators for full, dense Hessians described in Section 3.1.If the function whose Hessian is sought has n independent variables, then we must computen(n + 1)=2 univariate Taylor series corresponding to the number of possibly distinct entries in theHessian. If the Hessian is sparse, we need only propagate univariate Taylor series for the nonzeroentries in the Hessian. We order the index of f' and f'' as suggested by Table 3 in the column-majororder of the lower triangular part of the Hessian matrix.8

Listing 6 shows the code for the multiplication operation. A complete program including thecode for +, *, /, and exp is included as Appendix C.c MULTIPLICATION: f = u * vcc df dv duc -- = u * -- + -- * vc dx dx dxcc 2 2 2c d f d v du dv d uc --- = u * --- + 2 * -- * -- + --- * vc 2 2 2c dx dx dx dx dxcc We divide both sides by 2 to store the Taylor coefficient.c r$1 = u * vdo g$j$ = 1, pgr1(gj) = u * g$v(g$j$) + g$u(gj) * vhr1(gj) = u * h$v(g$j$) + 2 * g$u(gj) * g$v(g$j$) + h$u(gj) * vend do Listing 6. Multiplication operator for forward Hessians as univariate seriesTable 4 gives the computational complexity of the univariate Taylor � operator, assuming theHessian matrix is dense.Table 4. Maximum computational complexity of the univariate Taylor � operatorCost +'s �Function 0 1Gradient n 2nHessian n(n+ 1) 1:5n(n+ 1)The complexity of the other operators is similar, di�ering only in the constants. In addition, thereis a one-time cost associated with constructing the o�-diagonal elements of the Hessian accordingto Equation (2).We prefer the technique of interpolation utilizing forward-mode univariate Taylor series to theforward-mode propagation of Hessian matrices (Section 3.1) for implementation in ADIFOR becauseinterpolation� handles sparse Hessians by generating series only for nonzero entries,� handles very large Hessians by generating elements in multiple sweeps,� can generate arbitrary elements with little redundant computation,� parallelizes and vectorizes,� uses simple data structures { scalars and vectors, rather than symmetric matrices,� is easier to understand when coding individual operators, and� generalizes to higher derivatives. 9

3.3 PreaccumulationThe discussion in Section 3.2 of interpolation assumed that complicated expressions appearingon the right-hand side of assignment statements are parsed into an equivalent sequence of unaryand binary operations. In this section, we show how the preaccumulation of local gradients andHessians of complicated expressions yields savings of storage space, code size, and execution time bypropagating Taylor series at the level of statements in the original code, rather than at the smallerlevel of binary operations.Let the variables u and v depend on a vector x of independent variables. The �rst and secondderivatives ru, rv, r2u, and r2v are available from earlier computations. If w = f(u; v), the chainrule tells us that rw = @w@u � ru+ @w@v � rv; andr2w = @w@u � r2u+ @w@v � r2v (3)+@2w@u2 � (ru)2 + 2 @2w@u@v � ru � rv + @2w@v2 � (rv)2:Hence, if we know the \local" derivatives (@w@u ; @w@v) and (@2w@u2 ; @2w@u@v ; @2w@v2) of w with respect to v andu, we can easily compute rw and r2w, the derivatives of w with respect to x. An example ofEquation (3) is given in Equation (2) for the simple case w = f(u; v) = u � v. Equation (3) forpropagating Taylor series has the much simpler form given by Equation (5).The idea is that the large \global" derivatives rw are propagated in the forward mode from oneassignment statement to another, while the scalar \local" derivatives (@w@u ; @w@v) are preaccumulatedindependently of the larger
ow of control from one statement to the next. ADIFOR was the �rsttool for automatic di�erentiation to use preaccumulation of local derivatives by applying the reversemode at the statement level for the e�cient computation of �rst derivatives [3,6]. The hierarchy of\local" and \global" derivatives extends to higher-order derivatives.If w = f(s1; : : : ; sk), let rf and r2f denote the \local" gradient and Hessian, respectively, of fwith respect to s1; : : : ; sk. If we extend Equation (3) to complicated right-hand sides, we getw = f(s1; : : : ; sk)w0 = kXi=1(rf)i � si0= rfT � s0 (4)w00 = kXi=1 24(rf)i � si00 + si0 � kXj=1 �(r2f)i;j � sj 0�35= rfT � s00 + s0T � r2f � s0: (5)Equation (5) represents derivatives in each of the p directions, which may be computed in parallel.The important point to note in Equation (5) is that there are only two vector loops of lengthp, independent of the numer of variables or operations on the right-hand side of the assignmentstatement. The local k-element gradient rf and the local k2-element Hessian r2f can be computedin any manner. We may apply preaccumulation again to less complicated subfunctions, or we mayuse the forward mode, the reverse mode, a combination of the two, or analytic formulas, if they areeasy to derive.4 How ADIFOR Generates Code for Second DerivativesThe central insight for the implementation in ADIFOR of the code for second derivatives is10

ADIFOR uses the reverse mode at the statement level to generate code forcomputing rf . By essentially applying ADIFOR again to that generatedcode, we obtain code for r2f . The result is code for the preaccumulationof local derivatives.In this section, we outline how this central insight is implemented in ADIFOR. In the followingsection, we give an example.Since the number of independent variables is known at compile-time, extensive scalar code op-timizations can be applied in the computation of rf . In particular, if all loops are completelyunrolled, we prune many computations by exploiting the symmetry in r2f . But even ignoring thesymmetry is not a big issue, since k (the number of active variables appearing on the right hand sideof an assignment statement in the user's original code) is usually quite small. In this way, generatingthe code for computing second derivatives is just an application of the current ADIFOR technology.In generating the code for Equations (4) and (5), we perform the same kinds of optimizationsthat we are doing now concerning zeros and ones.In the code generated by ADIFOR, we� propagate three-term Taylor series, one series for each nonzero element in the Hessian.� propagate series in an overall forward mode similar to current gradients.� For each composite assignment statement{ generate gradient code for that assignment,{ pass the generated code to ADIFOR \recursively", and{ integrate the results.In general, let us consider an assignment statement with k variables on the right hand sidew = f (s1, s2, ..., sk)We wish to transform the code for the assignment statement into code to propagate the �rst andsecond derivative objects w0 and w00. The tasks for the code transformation algorithm are:Task 1: Parse the expression on the right hand side into a sequence of m simple assignment state-ments consisting of at most unary or binary operators or elementary functions:Block 1:r$0 = s1. . .r$m = ...w = r$mTask 2: Generate and store the code for the appropriate adjoint objects for the code from Block1 in reverse mode:Block 2:c r$m = ...r$?$bar = r$?$bar + r$m$bar * ...r$?$bar = r$?$bar + r$m$bar *s1$bar =sk$bar = ... 11

For each assignment statement in Block 1, we generate one or two statements incrementinga bar object. Somewhere in Block 2, there must be at least one statement incrementing thebar object associated with each of the variables s1, s2, : : :, sk.Task 3: For each variable x appearing on the left hand side of an assignment statement in Block1 or in Block 2, declare a variable h$x(k), (where k is the number of variables on the righthand side of the assignment statement being processed.Task 4: Call ADIFOR \recursively." That is, take the assignment statements in Block 1 followedby the assignment statements in Block 2, parse them, and generate code for the appropriateadjoint objects in reverse mode. The application of ADIFOR to this code is simpler thanin the general case because all assignment statements are already parsed into a form with atmost a unary or a binary operation or an elementary function, except that the assignmentstatements for the bar object in Block 2 have a special form with two binary operations +and *. However, the form of the bar assignments is known in advance. For each assignmentstatement of the formr$j = f (r$1, r$2)in Block 1, we generate code of the formc r$j = f (r$1, r$2)do g$i = 1, khrj(gi) = f_{r$2} * h$r$1(g$i$) + f_{r$1} * hr2(gi)end dor$j = f (r$1, r$2)For each assignment statement of the formrjbar = rjbar + r1bar * xin Block 2, we generate code of the formc rjbar = rjbar + r1bar * xdo g$i = 1, kh$rjbar(gi) = hrj$bar(g$i$) + x * h$r1bar(gi)+ r1bar * h$x(g$i$)end dor$j$bar = r$j$bar + r$1$bar * xTask 5: Generate the �nal loop:do g$i = 1, g$pgw(gi) = s1$bar * g$s1(gi) + s2$bar * g$s2(gi)+ ... + sk$bar * g$sk(gi)h$w(g$i$) = s1$bar * h$s1(g$i$) + s2$bar * h$s2(g$i$)+ ... + sk$bar * h$sk(g$i$)+ h$s1$bar(1) * g$s1(gi)**2+ h$s2$bar(2) * g$s2(g$i$)**2+ ... + h$sk$bar(k) * g$sk(gi)**2+ 2.0 * g$s1(g$i$)* (h$s1$bar(2) * g$s2(gi)+ ... + h$s1$bar(k) * g$sk(g$i$))+ 2.0 * g$s2(gi)* (h$s2$bar(3) * g$s3(g$i$)+ ... + h$s2$bar(k) * g$sk(gi))+ ... + 2.0 * g$s{k-1}(g$i$)* (h$s{k-1}$bar(k) * g$sk(gi))end dow = r$m 12

The second assignment inside the do loop implements Equation (4); the third implementsEquation (5). We might choose to call a subroutine (di�erent for each value of k), but callinga subroutine interferes with code optimization.Task 6: Apply code optimization. Then write the resulting code.5 Example of the Generated CodeAs an example of the tasks that ADIFOR must perform to generate code to compute second-orderderivatives, we take the assignment statementw = -y / (z * z * z)used as an example in [3] to motivate the generation of code for the hybrid mode. We proceedin incremental steps from a simple subroutine containing this assignment statement to the �nalsubroutine illustrating the code to be generated by ADIFOR. We give the relevant code fragmentsin the text and relegate listings of the complete programs to appendixes at the end of the paper.We emphasize that the steps described here are steps to understanding the code to be generatedby ADIFOR. We are doing by hand what we expect ADIFOR to do automatically. In operation,the generation of code for second derivatives by ADIFOR is as transparent to the user as runningADIFOR for �rst derivatives.5.1 Step 1. Write original codeListing 7 shows a subroutine containing the example assignment statement. A driving programto call subroutine examp2 is given in Appendix D.subroutine examp2 (x, xdim, f)integer xdimreal x(xdim), y, z, wc y and z depend in some way on x(1..xdim)y = x(1)z = x(2)c Consider the assignment statementw = -y / (z * z * z)c f depends in some way on wf = wreturnend Listing 7. Original code for example assignment statement5.2 Step 2. Run ADIFOR on examp2 dr.f + examp2.fOur intention is to apply ADIFOR to the code generated by ADIFOR. Hence, the second stepis to1. nominate x as an independent variable,2. nominate f as an dependent variable,3. set pmax = 4 (the number of locations in x), and13

4. run ADIFOR on examp2 dr.f + examp2.f to generate examp2.5.f.Listing 8 shows the portion of examp2.5.f that generates the �rst derivative objects for the exampleassignment statement. The complete subroutine examp2.5.f is given in Appendix E.C Consider the assignment statementC w = -y / (z * z * z)r$1 = z * zr$2 = r$1 * zr$3 = -y / (r$2)r$2bar = (-r$3 / (r$2))r$1bar = r$2bar * (z)zbar = r$2bar * (r$1)zbar = zbar + r$1bar * zzbar = zbar + r$1bar * zybar = -(1.0d0 / r$2)do 99993 g$i$ = 1, gpg$w(g$i$) = ybar * g$y(gi) + zbar * g$z(g$i$)99993 continuew = r$3 Listing 8. ADIFOR-generated �rst derivative code5.3 Step 3. Run ADIFOR-generated codeAs a check on correct programming, we run the ADIFOR-generated code examp2.5.f with itsdriver examp2 grad.f (see Appendix E) and get the correct results shown in Listing 9.ADIFOR-generated code.F = -0.12500grad F = -1.250000E-01 1.875000E-01 0.000000E+00 0.000000E+00Listing 9. Results from ADIFOR-generated �rst derivative code5.4 Step 4. Extract ADIFOR-generated Code for AssignmentOur intention is to implicitly pass to ADIFOR the code it has previously generated for each righthand side. That is, the recursive ADIFOR call is repeated for each assignment statement.Here, we simulate a recursive ADIFOR call by extracting from examp2.5.f the �rst derivativecode for only the example assignment statement under study here. That is, we extract the codeshown in Listing 8 from examp2.5.f and place it into a subroutine of its own. We add parametersand variable declarations as appropriate. The resulting subroutine examp2G is shown in Listing10. The function of subroutine examp2G is to compute the local gradient of w with respect to thevariables y and z that appear on the right hand side of the example assignment statement. Theselocal derivatives will be assembled later to form the global derivatives of w with respect to theindependent variables x according to Equations (4) and (5).subroutine examp2G (gp, y, gy, z, gz, w, g$w)integer g$p$, g$pmax$, g$i$parameter (g$pmax$ = 4)real r$2bar, r$1bar, ybar, zbar, r$1, r$2, r$3real y, z, wreal g$y(g$pmax$), g$z(g$pmax$), g$w(g$pmax$)C Consider the assignment statement 14

C w = -y / (z * z * z)r$1 = z * zr$2 = r$1 * zr$3 = -y / (r$2)r$2bar = (-r$3 / (r$2))r$1bar = r$2bar * (z)zbar = r$2bar * (r$1)zbar = zbar + r$1bar * zzbar = zbar + r$1bar * zybar = -(1.0d0 / r$2)do 99993 g$i$ = 1, gpg$w(g$i$) = ybar * g$y(gi) + (zbar * g$z(g$i$))99993 continuew = r$3returnend Listing 10. Subroutine for computing local gradient5.5 Step 5. Run ADIFOR on examp2G dr.f + examp2G.fWe wish to apply ADIFOR to the subroutine examp2G.f shown in Listing 10. Due to knownlimitations of the current ADIFOR implementation, we had to make the following modi�cations:1. replace 1.0d0 by 1.0 (Fortran knows about type coersion, but ADIFOR does not),2. replace $ by Q (xadifor recognizes only characters in the o�cial Fortran character set), and3. replace bar by B (ADIFOR can generate variables whose names con
ict with variables alreadypresent in the code).These limitations will be removed in subsequent versions of ADIFOR. Then we wrote a driver andran the resulting code (see Appendix F) to verify correct programming.We are now ready for the recursive application of ADIFOR. The assignment statements in Listing10 are relatively simple. Hence, the code generated by ADIFOR is much simpler than for the generalcase of complicated right hand sides. This relative simplicity allows ADIFOR to perform furthercode optimizations not illustrated here. To apply ADIFOR the second time, we1. nominate y and z as independent variables,2. nominate gqw (renamed g$w) as the dependent variable,3. set pmax = 2 (the number of variables on the right hand side of the example assignmentstatement), and4. run ADIFOR on examp2G dr.f + examp2G .f to generate examp2g.74.f.Listing 11 shows the portion of examp2g.74.f that generates the �rst derivative objects for gqw. Thecomplete subroutine examp2g.74.f is given in Appendix G. The code to be generated by subsequentversions of ADIFOR will be much more compact because ADIFOR will use the reverse mode onbasic blocks, rather than on individual statements as illustrated here.C Consider the assignment statementC w = -y / (z * z * z)C rq1 = z * zdo 99988 gi = 1, gpg$rq1(g$i$) = (z + z) * g$z(gi)99988 continue 15

rq1 = z * zC rq2 = rq1 * zdo 99987 gi = 1, gpg$rq2(g$i$) = z * g$rq1(gi) + rq1 * g$z(g$i$)99987 continuerq2 = rq1 * zC rq3 = -y / rq2r$1 = -y / (rq2)do 99986 g$i$ = 1, gpg$rq3(g$i$) = -(1.0d0 / rq2) * g$y(gi) + ((-r$1 / (rq2)) * g$rq2(gi))99986 continuerq3 = r$1C rq2b = -rq3 / rq2r$1 = -rq3 / (rq2)do 99985 gi = 1, gpg$rq2b(g$i$) = -(1.0d0 / rq2) * g$rq3(gi) + ((-r$1 / (rq2)) * g$rq2(gi))99985 continuerq2b = r$1C rq1b = rq2b * zdo 99984 gi = 1, gpg$rq1b(g$i$) = z * g$rq2b(gi) + rq2b * g$z(g$i$)99984 continuerq1b = rq2b * zC zb = rq2b * rq1do 99983 gi = 1, gpg$zb(g$i$) = rq1 * g$rq2b(gi) + rq2b * g$rq1(g$i$)99983 continuezb = rq2b * rq1C zb = zb + rq1b * zdo 99982 gi = 1, gpg$zb(g$i$) = g$zb(gi) + z * g$rq1b(g$i$) + rq1b * g$z(gi)99982 continuezb = zb + rq1b * zC zb = zb + rq1b * zdo 99981 gi = 1, gpg$zb(g$i$) = g$zb(gi) + z * g$rq1b(g$i$) + rq1b * g$z(gi)99981 continuezb = zb + rq1b * zdo 99999, gqiq = 1, gqpqC gqw(gqiq) = -1.0 / rq2 * gqy(gqiq) + zb * gqz(gqiq)r$0 = -1.0 / (rq2)do 99980 gi = 1, gpg$gqw(g$i$, gqiq) = gqy(gqiq) * (-r$0 / (rq2)) * g$rq2(gi)* + gqz(gqiq) * g$zb(g$i$)99980 continuegqw(gqiq) = r$0 * gqy(gqiq) + zb * gqz(gqiq)99993 continue99999 continuew = rq3returnend Listing 11. Code from recursive ADIFOR callIt is important to understand what we have computed. Subroutine examp2G computes gqw, thelocal gradient of �rst derivatives of w with respect to y and z. By instructing ADIFOR to di�erentiategqw with respect to y and z, we have generated subroutine examp2g.74 to compute the local Hessianof w with respect to y and z.5.6 Step 6. Run ADIFOR-generated CodeAs a check on correct programming, we wrote a driver program and called the ADIFOR-generatedsubroutine examp2g.74. The complete code is contained in Appendix G. The local gradient and16

Hessian computed are shown in Listing 12.Hessian by Adifor (Adifor (examp2.f)).W = -0.12500grad W = -1.250000E-01 1.875000E-01Hessian W =1 0.000000E+00 1.875000E-012 1.875000E-01 -3.750000E-01Listing 12. Local gradient and Hessian computed by examp2g.745.7 Step 7. Model Code for ADIFOR-generated Second DerivativesNow we are �nally ready to merge the ADIFOR-generated �rst derivative code in subroutineexamp2.5.f with the ADIFOR-generated local second derivative code in subroutine examp2g.74 toget subroutine examp2H shown in Listing 13. The subroutine in Listing 13 is essentially the codeADIFOR generates for second derivatives, except that this code contains explanatory comments,and the ADIFOR-generated code bene�ts from code optimizations not illustrated here. Commentsin this code clarify details of the merging process.subroutine g$examp2$5(gp, x, gx, hx, ldg$x, xdim, f, g$f, hf, ldgf)C Purpose: Explore 2nd derivative code.C Hand-written ADIFOR-like Hessian codeC Author: George Corliss, 26-FEB-1992C Reference:C Simple example from Working Note 1, Section 2.C Discussion:C Merge examp2.5.f (gradient) + examp2g.74.f (local Hessian)c g$... denote global objectsc h$... denote objects local to one assignment statement.CC Formal f is active.C Formal x is active.C integer gp, g$pmax$, gi, ldg$fparameter (g$pmax$ = 10)real r$1bar, r$2bar, ybar, zbar, r$1, r$2, r$3c Added ADIFOR-like variables:real r$4, r$5, r$6C real f, g$f(ldg$f), h$f(ldg$f)integer xdim, ldg$xreal x(xdim), g$x(ldg$x, xdim), h$x(ldg$x, xdim)real y, z, wreal g$y(g$pmax$), h$y(g$pmax$), g$z(g$pmax$), h$z(g$pmax$),+ g$w(g$pmax$), h$w(g$pmax$)c Declarations for local gradient objectsc Dimension is largest number of variables occurring in any RHSc in which this variable is involved.real h$y(2), h$z(2), hr1(2), hr2(2), hr3(2), hr2bar(2),+ hr1bar(2), h$ybar(2), h$zbar(2)C y and z depend in some way on x(1..xdim)C y = x(1)do 99995 gi = 1, gpg$y(g$i$) = g$x(gi, 1)h$y(g$i$) = h$x(gi, 1) 17

99995 continuey = x(1)C z = x(2)do 99994 gi = 1, gpg$z(g$i$) = g$x(gi, 2)h$z(g$i$) = h$x(gi, 2)99994 continuez = x(2)C Consider the assignment statementC w = -y / (z * z * z)c r$1 = z * zc r$2 = r$1 * zc r$3 = -y / (r$2)c r$2bar = (-r$3 / (r$2))c r$1bar = r$2bar * (z)c zbar = r$2bar * (r$1)c zbar = zbar + r$1bar * zc zbar = zbar + r$1bar * zc ybar = -(1.0d0 / r$2)c do 99993 g$i$ = 1, gpc g$w(g$i$) = ybar * g$y(gi) + (zbar * g$z(g$i$))c9993 continuec w = r$3c========================c gp: Within this block, the variable named gp is renamedc to hp. Its value is equal to the number of variablesc on the rhs.c hy, hz: Local gradient objects of dimension = hpc h$u = (u_y, u_z)cc For each global univariate Taylor series being propagated,c w = f (y, z)c w_u = f_y * y_u + f_z * z_uc w' = f_y * y' + f_z * z'c w_{uu} = f_y * y_{uu} + f_z * z_{uu}c + 2 * f_{yz} * y_u * z_uc + f_{yy} * (y_u)^2 + f_{zz} * (z_u)^2c w'' = f_y * y'' + f_z * z'' + 2 * f_{yz} * y' * z'c + f_{yy} * (y')^2 + f_{zz} * (z')^2c Initialize objects local to statement:hp = 2h$y(1) = 1.0h$y(2) = 0.0h$z(1) = 0.0h$z(2) = 1.0c Compute ybar = f_y, zbar = f_zc h$w = f_{yy}, f_{yz}, f_{zz}:C r$1 = z * zdo 99988 g$i$ = 1, hphr1(gi) = (z + z) * h$z(g$i$)99988 continuer$1 = z * zC r$2 = r$1 * zdo 99987 gi = 1, hphr2(gi) = z * hr1(gi) + r$1 * h$z(gi)99987 continuer$2 = r$1 * zC r$3 = -y / r$2r$4 = -y / (r$2) 18

do 99986 gi = 1, hphr3(gi) = -(1.0d0 / r$2) * h$y(gi)* + ((-r$4 / (r$2)) * hr2(gi))99986 continuer$3 = r$4c Re-insert the code that was optimized out:C ybar = -1.0 / r$2r$6 = -1.0 / r$2do g$i$ = 1, hph$ybar(g$i$) = -(r$6 / r$2) * h$r$2(g$i$)end doybar = r$6C r$2bar = -r$3 / r$2r$5 = -r$3 / (r$2)do 99985 gi = 1, hphr2bar(gi) = ybar * hr3(gi) + ((-r$5 / (r$2)) * hr2(gi))99985 continuer$2bar = r$5C r$1bar = r$2bar * zdo 99984 gi = 1, hphr1bar(gi) = z * hr2bar(gi) + r$2bar * h$z(gi)99984 continuer$1bar = r$2bar * zC zbar = r$2bar * r$1do 99983 gi = 1, hph$zbar(g$i$) = r$1 * hr2bar(gi) + r$2bar * h$r$1(g$i$)99983 continuezbar = r$2bar * r$1C zbar = zbar + r$1bar * zdo 99982 gi = 1, hph$zbar(g$i$) = h$zbar(gi) + z * hr1bar(gi)* + r$1bar * h$z(gi)99982 continuezbar = zbar + r$1bar * zC zbar = zbar + r$1bar * zdo 99981 g$i$ = 1, hph$zbar(g$i$) = h$zbar(gi) + z * hr1bar(gi)* + r$1bar * h$z(gi)99981 continuezbar = zbar + r$1bar * zc At this point, in order to generate the statementC g$w(g$i$) = -1.0 / r$2 * g$y(g$i$) + zbar * g$z(gi)c the compiler must already know thatc w_y = ybar = -1.0 / r$2c w_z = zbarc Hence, w_{yy} = h$ybar(1)c w_{yz} = h$ybar(2) = h$zbar(1)c w_{zz} = h$zbar(2)c Compute global univariate Taylor series:c w = f (y, z)c w' = f_y * y' + f_z * z'c w'' = f_y * y'' + f_z * z'' + 2 * f_{yz} * y' * z'c + f_{yy} * (y')^2 + f_{zz} * (z')^2do gi = 1, gpg$w(g$i$) = ybar * g$y(gi) + zbar * g$z(g$i$)h$w(gi) = ybar * h$y(g$i$) + zbar * h$z(gi)* + 2.0 * h$ybar(2) * g$y(gi) * g$z(g$i$)* + h$ybar(1) * g$y(g$i$) * g$y(gi)* + h$zbar(2) * g$z(gi) * g$z(g$i$)end do 19

w = r$3c==C f depends in some way on wf = wdo 99992 gi = 1, gpg$f(g$i$) = g$w(gi)h$f(g$i$) = h$w(gi)99992 continuereturnend Listing 13. Model code for ADIFOR-generated second derivatives5.8 Step 8. Run the Model Second Derivative CodeWhen we write a driver program (see Appendix H) and run the merged subroutine examp2Hshown in Listing 13, we get the correct global gradient and Hessian shown in Listing 14.Series for F :1 -1.250000E-01 -1.250000E-01 0.000000E+002 -1.250000E-01 6.250000E-02 0.000000E+003 -1.250000E-01 1.875000E-01 -3.750000E-014 -1.250000E-01 -1.250000E-01 0.000000E+005 -1.250000E-01 1.875000E-01 -3.750000E-016 -1.250000E-01 0.000000E+00 0.000000E+007 -1.250000E-01 -1.250000E-01 0.000000E+008 -1.250000E-01 1.875000E-01 -3.750000E-019 -1.250000E-01 0.000000E+00 0.000000E+0010 -1.250000E-01 0.000000E+00 0.000000E+00For F : value: -1.250000E-01Gradient : -1.250000E-01 1.875000E-01 0.000000E+00 0.000000E+00Hessian :1 0.000000E+002 1.875000E-01 -3.750000E-013 0.000000E+00 0.000000E+00 0.000000E+004 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00Listing 14. Global gradient and Hessian from the hand-written second derivative code.6 Pending Implementation IssuesIn this section, we simply mention some issues that remain to be settled with respect to secondderivatives.6.1 Data Structures for p Taylor SeriesIn what data structures should the p Taylor series be stored?Alternative 1.1: Three separate objects: value: x(p), �rst derivative: g$x(p) = x0, and secondderivative h$x(p) = x00.Alternative 1.2: Combined array x(p,0:2).Alternative 1.3: Value x(p) and a combined array x(p,2) containing the derivative objects.Suggest: Alternative 1.1. 20

� Generalizes to higher derivatives� The h$routine should also return values directly as routine did6.2 In-line vs Subroutine CallThis paper illustrates the code in a conceptual way. How should it actually be implemented?Alternative 2.1: Generate code in line.Alternative 2.2: Call generated subroutine for each right hand side.Suggest: Alternative 2.1.� Better code optimization. In particular, the code generated to compute local secondderivatives can be heavily optimized.� Better parallelization and vectorization scope� Large code, but no bloat in the number of subroutinesThe issue here is that the preaccumulation of local derivatives is an \o�-line" process withrespect to the broader picture of the overall forward-mode propagation of sets of Taylor series atthe statement level. However, compiler technology for code optimization transcends this distinction.In Listing 13, the assignment statements g$w(g$i$) = ... and h$w(gi) = ... contain several�bar objects. In many computations (computational models based on grids, for example), many ofthe corresponding �bar objects are 0, 1, 2, or another simple expression which is folded into thecode using conventional compiler code-folding techniques. Then, subexpressions of the forms 0 + �,0 � �, and 1 � � are simpli�ed appropriately before ADIFOR generates the code for computing thederivatives.For derivatives higher than second order, custom-generated subroutines might be better.6.3 What Drivers Do We Need?� Given sparsity pattern, compute Hessian and return in sparse data structure� Compute dense Hessian� Compute Hessian � vector� Compute Hessian � matrixIn Appendix I, we give several prototype library utilities:sereye.f Initialize univariate series for dense Hessianprtser.f Print univariate seriesprthes.f Print value, gradient, Hessianser2he.f Convert univariate series to value, gradient, Hessian formAcknowledgmentsWe thank Alan Carle for his helpful suggestions regarding higher derivatives and for his essentialroles in the ADIFOR development project. 21

References[1] Christian Bischof, Alan Carle, George Corliss, and Andreas Griewank. ADIFOR : Automaticdi�erentiation in a source translation environment. Preprint MCS{P288{0192, Mathematics andComputer Science Division, Argonne National Laboratory, Argonne, Ill., January 1992. ADI-FOR Working Note # 5. Accepted for the International Symposium on Symbolic and AlgebraicComputation, July 27{29, 1992, Berkeley, Calif.[2] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. ADIFOR:Fortran source translation for e�cient derivatives. Preprint MCS{P278{1291, Mathematics andComputer Science Division, Argonne National Laboratory, Argonne, Ill., December 1991. ADI-FOR Working Note # 4.[3] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. Generatingderivative codes from Fortran programs. Scienti�c Computing, to appear. ADIFOR WorkingNote # 1. Also appeared as Preprint MCS{P263{0991, Mathematics and Computer ScienceDivision, Argonne National Laboratory, Argonne, Ill., 1991, and as Technical Report 91185,Center for Research in Parallel Computation, Rice University, Houston, Tex. 77251, 1991.[4] Christian Bischof, George Corliss, and Andreas Griewank. ADIFOR exception handling. Techni-cal Memorandum ANL/MCS{TM{159, Mathematics and Computer Science Division, ArgonneNational Laboratory, Argonne, Ill., January 1992. ADIFOR Working Note # 3.[5] Christian Bischof, George Corliss, and Andreas Griewank. Structured second- and higher-orderderivatives through univariate Taylor series. Preprint MCS{P296{0392, Mathematics and Com-puter Science Division, Argonne National Laboratory, Argonne, Ill., 1992. ADIFOR WorkingNote # 6.[6] Christian Bischof and Paul Hovland. Using ADIFOR to compute dense and sparse Jacobians.Technical MemorandumANL/MCS{TM{158, Mathematics and Computer Science Division, Ar-gonne National Laboratory, Argonne, Ill., October 1991. ADIFOR Working Note # 2.[7] John Dennis and R. Schnabel. Numerical Methods for Unconstrained Optimization and NonlinearEquations. Prentice-Hall, Englewood Cli�s, N.J., 1983.[8] Andreas Griewank. On automatic di�erentiation. In M. Iri and K. Tanabe, editors, Mathemat-ical Programming: Recent Developments and Applications, pages 83 { 108. Kluwer AcademicPublishers, 1989.[9] Louis B. Rall. Di�erentiation in Pascal-SC: Type GRADIENT. ACM Trans. Math. Software,10(2):161 { 184, June 1984.
22

